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Abstract Fujiwara and Iwama [In: The 13th Annual International Symposium on
Algorithms and Computation, pp. 476–488 (2002)] first integrated probability distribu-
tion into the classical competitive analysis to study the rental problem. They assumed
that the future inputs are drawn from an exponential distribution, and obtained the
optimal competitive strategy and the competitive ratio by the derivative method. In
this paper, we introduce the interest rate and tax rate into the continuous model of
Fujiwra and Iwama [In: The 13th Annual International Symposium on Algorithms and
Computation, pp. 476–488 (2002)]. Moreover, we use the forward difference method
in different probabilistic environments to consider discrete leasing models both with
and without the interest rate. We not only give the optimal competitive strategies
and their competitive ratios in theory, but also give numerical results. We find that
with the introduction of the interest rate and tax rate, the uncertainty involved in
the process of decision making will diminish and the optimal purchasing date will be
put off.
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1 Introduction

In this paper, we consider improving the performance measure of competitive analysis
by integrating more information of the input structures into pure competitive analysis.
We introduce the interest rate and tax rate into the continuous model of Fujiwra and
Iwama [10]. Moreover, we use the forward difference method in different probabilistic
environments to consider discrete leasing models both with and without the interest
rate. We not only give the optimal competitive strategies and their competitive ratios
in theory, but also give some numerical results. It could be found that the introduc-
tion of an interest rate and a tax rate would diminish the uncertainty involved in the
process of decision making and put off the optimal purchasing date. This is only a
small move to obtain a more realistic solution of the problem; however, the analysis
is much more complicated because of the introduction of new parameters. There are
also other interesting insights not found in the Fujiwra’s and Iwama’s model with no
interest rate and tax rate. Therefore, we generalize the Fujiwra and Iwama model with
significant results.

1.1 Foundations

Many economic and financial decisions that are subject to uncertainty are conducted
in an ongoing fashion. For example, decisions related to currency exchange, stock
transactions or mortgage financing, etc., have to be made on-line. There are two
approaches to the problem: the classical approach and the competitive analysis. The
classical approach to studying the performance of on-line decision-making processes
(algorithms) relies on the use of probabilistic analysis. In the classical approach, deci-
sion-makers faced by uncertainty often have two different types of models. The first
type of model makes assumptions about the future distribution of relevant variables
such as exchange rates or mortgage rates, and aims for an acceptable average out-
come. The second type of model focuses on the worst case and then makes a decision.
It is well recognized in the literature that these two types of models may give unre-
alistic on-line algorithms that are far from optimal. Furthermore, for many real-life
problems, an adequate stochastic model is extremely difficult or costly to devise.

In competitive analysis (which was first applied to on-line algorithms by Sleator
and Tarjian [20]), we contrast the performance of an on-line strategy with that of an
optimal off-line strategy. We assume that the optimal off-line strategy has full knowl-
edge of future events. We minimize the worst-case ratio of on-line cost to optimal cost
or of optimal profit to on-line profit, for some measure of cost or of profit. Note that if
this ratio is bounded for all event sequences, then the on-line strategy is competitive.
We define the competitive ratio of this strategy to be the supremum of this ratio for
the profit measure and the infimum of this ratio for the cost measure.

Specifically, an on-line algorithm incrementally receives one observation (the
input) in each time period. An output is generated through the algorithm without
knowledge of the values of future observations. In a competitive analysis, an on-line
algorithm A is compared to an optimal off-line algorithm OPT. The optimal off-line
algorithm has full information of the entire input sequence and can act optimally.
The performance measure has an advantage over the traditional average-case mea-
sure. For most nontrivial decision-making activities it is analytically difficult for the
traditional average-result measure to come up with an accurate probabilistic model
solution [15,16].



J Glob Optim (2007) 38:1–20 3

Consider a cost problem. For a given input sequence I, denote CA(I) and COPT(I)
as the costs incurred by A and OPT in process I, respectively. Algorithm A is called
α-competitive if there are constants α and β such that,

CA(I) ≤ α · COPT(I) + β, (1)

for all input sequences I. For a competitive algorithm it must perform well on all input
sequences. A similar definition can be given for on-line profit maximization problems.

From the above definition, it is clear that the competitive ratio is a worst case
performance measure. Therefore, intuitively we can view an on-line problem as a two
person (zero-sum) game between an adversary and the on-line player. In general,
randomization is required to obtain optimal (expected) competitive performance.
The on-line player chooses an on-line algorithm and it is known to the adversary.
The adversary then chooses an input sequence. The payoff to the adversary is the
ratio of optimal off-line cost to on-line cost, or the performance ratio. Assume that
the adversary generates the input sequence oblivious to the on-line player’s random
choices. With full knowledge of the probability distributions of the on-line algorithm,
the input sequence is produced by the oblivious adversary in advance. Therefore, it is
straightforward to extend the analysis of the competitive ratio measure to randomized
on-line algorithms. Specifically, the randomized competitive ratio with respect to an
oblivious adversary is defined the same as (1) with E[CA(I)] replacing CA(I) where
E[·] is the expected value with respect to the random choices made by A [4,7].

1.2 Related work

In recent years, there has been a large literature on competitive analysis, which is
considered as a complementary approach in the analysis of algorithmic decision-mak-
ing under uncertain conditions. Specifically, the competitive approach is shown to be
productive for a variety of on-line financial problems. For the on-line leasing problem,
the prototype is the well-known “ski-rental” example put forward by Karp [14] in the
field of theoretical computer science. We briefly review the basic leasing model and
its main conclusion as follows. In a rental activity, let t be the total number of actual
leases, and the costs of renting and purchasing equipment be 1 and a positive integer
s, respectively. For the off-line problem, if s ≤ t, then buy; otherwise rent. For the
on-line problem, we consider the following deterministic on-line strategy: rent up to
k times and then buy. Thus, if t ≤ k, then always lease. Denote this on-line strategy
by A(k) (k = 0, 1, 2, . . .), then the optimal on-line strategy is A(s − 1), and its com-
petitive ratio is 2 − 1/s. A series of research has been carried out on this basic model.
Karlin et al. [13] make a significant contribution to on-line analysis for what they
call “the ski-rental-family of problem.” They give a randomized on-line algorithm
with a competitive ratio that is optimal e

e−1 ≈ 1.582. Irani and Ramanathan (1998
Personal Communication) study the situation when the purchase price varies but the
rental cost stays fixed, and respectively, give out the upper and lower bounds of the
competitive ratio for deterministic and randomized algorithms. They also define a �–
statistical adversary and present a deterministic algorithm against it. El-Yaniv et al.
[7] point out that the investor is often confronted with an important factor—interest
rate i, which may be an essential feature of any reasonable financial model. They
analyze the leasing problem with the interest rate, and give the competitive ratio of
optimal deterministic algorithm 1 + (1 + i)(1 − 1

s )(1 − s i
i+1 ) (therein, if i = 0, then
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2 − 1
s ) and the competitive ratio of optimal randomized algorithm 2− ( s

s−1 )γ −2
( s

s−1 )γ −1 , where

γ = ln(1−s(1− 1
1+i ))

ln 1
1+i

(therein, if i → 0, then γ = s; if s → ∞, then 2 − e−2
e−1 ≈ 1.582).

al-Binali [2] builds a famous Risk–Reward framework to analyze the rental problem
and the unidirectional trading problem. The framework explains that investors may
be willing to increase their risk for some form of reward. Albers et al. [1] introduce and
explore natural delayed information and action models to analyze several well-known
on-line problems inclusive of a rental problem in which time relevant information is
available and the time in which a decision has an effect may be decoupled. Moreover,
there are many extensible researches of the basic rental problem [3,6,8].

The previous research always avoided possibility distribution assumption. Ragha-
van [18], however, proposes a middle ground: the statistical adversary—an adversary
who generates the input that is constrained to satisfy certain statistical properties.
Raghavan uses this notion to analyze a simple version of the asset allocation problem
in investment theory. Fujiwara and Iwama [10] first break through the customary rule
to integrate a possibility distribution assumption into the pure competitive analysis
in order to study the on-line leasing problem, where by they assume that the input
sequences are subject to an exponential distribution. By integrating more information,
they obtain more favorable results that are consistent with reality.

Other than the above-mentioned methods of competitive analysis, there are many
other studies of the rental problem. Indeed, it is an optimal stopping problem, so
the sequential decision-making method that plays an important role in mathematical
statistics can be also used to solve the leasing problem. Moreover, for time sequen-
tial decision making to save costs, the investor often emphasizes the time value, and
hopes to stop activity immediately if enough information is available. It is beyond the
scope of this paper to survey those studies related to the leasing problem. We briefly
mention only a few here. For example, [17,19] emphasize asset lease contracts and the
tax effects on lease-and-buy decision making, and [21,22] discuss a class of Bayesian
optimal stopping and a decision rule of geometric distribution.

1.3 Our contribution

The purpose of this study is to improve the performance measurement of competitive
analysis by integrating more information of the input structures into pure competitive
analysis. We first extend the model in [10] by introducing the interest rate and tax
rate to obtain a more realistic solution of the problem. While some of the results in
[10] still hold, we find some new results that do not exist in the Fujiwra and Iwama
model. Therefore, we generalize the Fujiwra and Iwama results. However, the gain is
without a cost. The introduction of new parameters makes the analysis much more
complicated.

We find that if the average cost of always leasing without an interest rate is less
than the reciprocal of the product between the discount factor and the relative oppor-
tunity cost to purchase the equipment, then the optimal strategy for an investor is
to lease the equipment forever. Otherwise, the optimal strategy for an investor is to
purchase the equipment after leasing for several periods. Moreover, using the for-
ward difference method, we also investigate the discrete leasing model without an
interest rate and with an interest rate in different probabilistic environments. The
reason that we consider the geometric distribution comes from the coin-tossing idea
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that the leasing does not cease until the purchasing appears. Moreover, in probability
theory, the leasing activity in every period is similar to conducting a Bernoulli trial to
rent continuously or to purchase immediately. More important, the leasing problem
is essentially discrete, so a geometric distribution may be more reasonable to depict
its input structures. From numerical analysis, it can be found that the introduction of
an interest rate and a tax rate would diminish the uncertainty involved in the process
of decision making and the optimal purchasing date would be put off.

It is well known that the worst-case competitive analyses have provided us with
many analytically elegant results. However, they have serious limitations [5,9]. The
pure competitive analysis always assumes that an on-line player has no information
for input sequences. This assumption seems to be unrealistic when a decision-maker
does have some partial (statistical) information on the pattern of input sequences [12].
Therefore, the application of competitive algorithms may lead to inferior performance
relative to Bayesian algorithms in such cases. Note that the competitive analysis of
the worst case emphasizes the difficulty of estimating the input distribution. While it
is possible for many combinatorial problems with more complicated input structures
[11,23], we can find a number of interesting on-line problems with relatively simple
and tractable input structures. We can accurately characterize their input structures
by using statistical theory to perform a stochastic competitive analysis. We believe
that our analysis, as well as the results in [10], will be helpful in overcoming these
difficulties.

The rest of the paper is organized as follows. In Sect. 2, we review the Fujiwra
and Iwama model with no interest rate and with the input information drawn from
an exponential distribution. we then introduce the interest rate and tax rate into this
continuous model to extend the results in [10]. In Sect. 3, because the rental problem
is a discrete problem, we build a discrete model with input information drown from
a geometric distribution. We first analyze the case without an interest rate and tax
rate, and then introduce the two rates into the discrete model and obtain new results.
For example, with the introduction of an interest rate and a tax rate, the uncertainty
involved in decision making diminishes, and the optimal purchasing date is put off.
Moreover, several numerical examples are given in Sect. 4. Finally, Sect. 5 concludes
the paper.

2 Optimal analysis of the continuous model

We consider the following deterministic on-line leasing strategy A(k): rent up to k
times and then buy. Let CostON(t, k) and CostOPT(t) denote the cost of the on-line
algorithm and the cost of the optimal off-line algorithm, respectively, where t is the
total number of the actual leases. Fujiwara and Iwama study the continuous model
and propose the stochastic competitive ratio as follows.

Definition 1 Let the total number of the actual leases be a stochastic variable X, which
is drawn from a known probability distribution with probability density function f (t).
The stochastic competitive ratio is then defined as

C(k) = EX
CostON(X, k)

CostOPT(X)
=

∫ ∞

t=0

CostON(t, k)

CostOPT(t)
· f (t)dt. (2)

The on-line players use f (t) to estimate the input structures.
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For the leasing problem, let f (t) be the exponential distribution function f (t) =
λe−λt (λ > 0). This distribution means that the hazard rate of immediately purchasing
in every period of activity is λ, and the hazard rate of continuously renting in every
period of activity is 1 − λ.

2.1 Leasing in a market without an interest rate

Let the costs of renting and purchasing the equipment be 1 and a positive integer
s, respectively. For the off-line problem, if s ≤ t, then buy; otherwise rent. The first
observation is that

CostOPT(t) = min{s, t}. (3)

For the on-line problem, if t ≤ k, then always lease. According to on-line strategy
A(k) (k = 0, 1, 2, . . .), then it is not difficult to see that

CostON(t, k) =
{

t, t ≤ k,
k + s, t > k.

(4)

Obviously, the optimal strategy is immediate purchasing if s is equal to 1, so s is at
least 2.

According to Eqs. 2, 3, and 4, Fujiwara and Iwama obtain that, for 0 < k ≤ s,

C1(k) = 1 − e−λk + (k + s)
∫ s

k

1
t
λe−λtdt + k + s

s
e−λs (5)

and for k > s,

C2(k) = 1 + 1
λs

e−λs −
(

1
λs

− 1
)

e−λk. (6)

Applying the derivative method, they derive the following results [10].

Theorem 1 The following strategy provides an optimal stochastic competitive ratio for
the exponential input distribution f (t) = λe−λt (λ > 0): (1) if 1

λ
≤ s, then the investor

should rent the equipment forever, and its competitive ratio is 1 + 1
λ

e−λs. (2) If 1
λ

> s,
then the investor should purchase the equipment after renting k0 times, where k0 satisfies

s2λ − s
10 < k0 < s2λ, and its competitive ratio is 1 −

(
1 − λs − λs2

k0

)
e−λk0 .

2.2 Leasing in a market with an interest rate

The net present values of alternative investments are the main concern when making
financial decisions in the capital market. The interest rate is obviously an important
factor to consider in financial theory [7]. In our leasing problem, we will now consider
the effect of a financial market interest rate, defined as i, on the on-line decisions. We
assume that the on-line player needs the equipment throughout the entire n contigu-
ous periods. Furthermore, let τ be the tax rate that is a proportion of the purchasing
cost of the equipment. In general, it is reasonable to assume that 1

s(1+τ)
> i

1+i because
the purchase price of the equipment must be less than the present discount value

of the alternative of always leasing
(

s(1 + τ) <
∑∞

j=0
1

(1+i)j

)
. Otherwise, by forever

leasing the equipment without purchasing, the on-line player can attain a competitive
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ratio of 1. Define β = 1
1+i , and then 1

s(1+τ)
+β −1 > 0. This is the relative opportunity

cost to purchase the equipment. To make our expression simple, let ξ = 1
s(1+τ)

+β −1.

Clearly, assume that as 1
s(1+τ)

> i
1+i , the adversary player will never purchase the

equipment after leasing it for some time (as in [7]). Therefore, for any n, the optimal
off-line decision-making cost is

CostOPT(t) =
{

1−β t

1−β
, t ≤ n∗,

s(1 + τ) t > n∗,
(7)

where n∗ is the number of rentals of which the total present value is s(1 + τ). In other
words, n∗ is the root of 1−βn

1−β
= s(1 + τ). That is,

n∗ = ln(1 − s(1 + τ)(1 − β))

ln β
=

ln
(

1 − is(1+τ)
1+i

)

ln 1
1+i

.

Based on the strategies, set A(k): rent k times and then buy, where 0 ≤ k ≤ n − 1, the
on-line decision-making cost is obviously

CostON(t, k) =
{ 1−β t

1−β
, t ≤ k,

sβk(1 + τ) + 1−βk

1−β
t > k.

(8)

According to (2), (7), and (8), we can obtain that, for 0 < k ≤ n∗,

C1(k) = 1 − e−λk + (1 − βn∗+k)

∫ n∗

k

λe−λt

1 − β t dt +
[
βk + 1 − βk

s(1 + τ)(1 − β)

]
e−λn∗

(9)

and for k > n∗,

C2(k) = 1 − e−λn∗ + 1
s(1 + τ)(1 − β)

∫ k

n∗
(1 − βk)λe−λtdt

+
[
βk + 1 − βk

s(1 + τ)(1 − β)

]
e−λk. (10)

Note that, for i → 0 and τ = 0, it can be shown that n∗ → s. The optimal off-line
cost (7) and the on-line cost (8) then degenerate into (3) and (4) without an interest
rate and a tax rate, respectively. Accordingly, the expressions (9) and (10) degenerate
into (5) and (6), respectively. Thus similar to the analysis of Theorem 1, we have the
following results.

Theorem 2 Suppose that the inputs are drawn from the exponential distribution func-
tion f (t) = λe−λt (λ > 0). Let i be the interest rate in the financial market, and δ(i) =
(1+i) ln(1+i)

i . Then, the following strategy provides an optimal stochastic competitive
ratio.

1. If 1
λ

< 1
ξ ·δ(i) , then the average cost of always leasing without an interest rate is less

than the reciprocal of the product between the discount factor and the relative oppor-
tunity cost. The optimal strategy for an investor is to lease the equipment forever,
and the competitive ratio is 1 + ξ ·δ(i)

λ−ln β
e−λn∗

.
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2. If 1
λ

= 1
ξ ·δ(i) , then the average cost of always leasing without an interest rate is equal

to the reciprocal of the product between the discount factor and the relative oppor-
tunity cost. The optimal strategy for an investor is to purchase the equipment after
n∗ periods, and the competitive ratio is 1 + βn∗

e−λn∗
.

3. If 1
λ

> 1
ξ ·δ(i) , where λ >

s(1+τ) ln β
2 (1 −

√
4

s(1+τ)(1−β)
− 3), then the average cost of

always leasing without an interest rate is more than the reciprocal of the product
between the discount factor and the relative opportunity cost. The optimal strategy
for an investor is to purchase the equipment after k0 periods, and the competitive ratio

is 1 − [1 − λsβk0 (1+τ)

δ(i)(1−βk0 )
+ λ

ξ ·δ(i)(1−βk0 )
]e−λk0 , where k0 satisfies k0 < 1

ln β
ln(1 − λ

ξ ·δ(i) ),
where k0 is established by using the dichotomous search algorithm in the polynomial
time O(log( 1

ln β
ln(1 − λ

ξ ·δ(i) ))).
4. If 1

λ
→ ∞, i.e. the average cost of always leasing without an interest rate approaches

+∞, then the optimal competitive ratio of any strategy A(k) is 1
s(1+τ)(1−β)

+ (1 −
1

s(1+τ)(1−β)
)βk. The optimal strategy for an investor is to purchase the equipment at

the very beginning, and the competitive ratio approaches 1.

Proof Differentiating C1(k) and C2(k), respectively, we can get their first and second-
order derivatives.

dC1(k)

dk
= λe−λk − βn∗+k ln β

∫ n∗

k

λe−λt

1 − β t dt − (1 − βn∗+k)
λe−λk

1 − βk

− βn∗+k ln β

s(1 + τ)(1 − β)
e−λn∗

d2C1(k)

dk2 = −λ2e−λk − βn∗+k(ln β)2
∫ n∗

k

λe−λt

1 − β t dt − 2βn∗+k ln β
λe−λk

1 − βk

− βn∗+k(ln β)2

s(1 + τ)(1 − β)
e−λn∗ − (1 − βn∗+k)

−λ2(1 − βk)e−λk + λe−λk ln ββk

(1 − βk)2

dC2(k)

dk
=

[
(1 − 1

s(1 + τ)(1 − β)
) ln β − λ

]
βke−λk.

For (1 − 1
s(1+τ)(1−β)

) ln β < λ, we have

dC1(k)

dk
< λe−λk + λsβk(1 + τ)(1 − β)

∫ n∗

k

λe−λt

1 − β t dt − 1 − βn+k

1 − βk
λe−λk + λβke−λn∗

< λe−λk + λβk(1 − βn)

1 − βk
(e−λk − e−λn∗

) − 1 − βn+k

1 − βk
λe−λk + λβke−λn∗

= λβ2ke−λn∗

1 − βk
(βn∗−k − 1) < 0.

It is obvious that C1(k) is a decreasing function of k for 0 < k ≤ n∗; therefore C1(k) be-

comes minimal when k = n∗. Note that dC2(k)
dk =

[
(1 − 1

s(1+τ)(1−β)
) ln β − λ

]
βke−λk <

0. It follows that C2(k) is a decreasing function of k for k > n∗, and C2(k) becomes
minimal when k → ∞. The optimal competitive ratio is 1 + ξ ·δ(i)

ln β−λ
e−λn∗

.
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For (1 − 1
s(1+τ)(1−β)

) ln β > λ, it is simple to check that

lim
k→0

dC1(k)

dk
= −∞, lim

k→n∗
dC1(k)

dk
=

[(
1 − 1

s(1 + τ)(1 − β)

)
ln β − λ

]
βn∗

e−λn∗
> 0.

For λ >
s(1+τ) ln β

2 (1 −
√

4
s(1+τ)(1−β)

− 3), we can prove that d2
C1(k)

dk2 > 0 as follows.

d2C1(k)

dk2 = βk

[
1 − βn∗

1 − βk
λ2e−λk + 2βn∗ − βn∗+k − 1

(1 − βk)2
λe−λk ln β

−βn∗
(ln β)2

∫ n∗

k

λe−λt

1 − β t dt − βn∗
(ln β)2

1 − βn∗ e−λn∗
]

> βk

[
1 − βn∗

1 − βk
λ2e−λk + 2βn∗ − βn∗+k − 1

(1 − βk)2
λe−λk ln β

−βn∗
(ln β)2

1 − βk

∫ n∗

k
λe−λtdt − βn∗

(ln β)2

1 − βn∗ e−λn∗
]

= βk

[
1 − βn∗

1 − βk
λ2e−λk + 2βn∗ − βn∗+k − 1

(1 − βk)2
λe−λk ln β − βn∗

(ln β)2

1 − βk
e−λk

]

+βn∗+k(ln β)2e−λn∗
(

1
1 − βk

− 1
1 − βn∗

)

> βke−λk

[
1 − βn∗

1 − βk
λ2 + 2βn∗ − βn∗+k − 1

(1 − βk)2
ln β · λ − βn∗

(ln β)2

1 − βk

]
,

where the expression in brackets in the last inequality is a quadratic function of λ. To

obtain d2C1(k)

dk2 > 0, the lower bound λ is estimated by the following:

1

2 · 1−βn∗
1−βk

[
−2βn∗ − βn∗+k − 1

(1 − βk)2
ln β

+
√

(ln β)2(2βn∗ − βn∗+k − 1)2

(1 − βk)4
+ 4 · βn∗

(ln β)2(1 − βn∗
)

(1 − βk)2

⎤
⎦

= − ln β[2βn∗ − βn∗+k − 1 + √
(2βn∗ − βn∗+k − 1)2 + 4βn∗

(1 − βn∗
)(1 − βk)2]

2(1 − βn∗
)(1 − βk)

< − ln β

2(1 − βn∗
)(1 − βk)

[−(1 − βn∗
)2 +

√
(1 − βn∗

)2 + 4βn∗
(1 − βn∗

)(1 − βn∗
)2]

= (1 − βn∗
) ln β

2(1 − βk)

⎡
⎣1 −

√
1 + 4βn∗

1 − βn∗

⎤
⎦

= s(1 + τ) ln β

2(1 + β + β2 + · · · + βk−1)

(
1 −

√
4

s(1 + τ)(1 − β)
− 3

)

<
s(1 + τ) ln β

2

(
1 −

√
4

s(1 + τ)(1 − β)
− 3

)
.
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For the optimal decision-making date k0, d2C1(k)

dk2 > 0 if and only if there is a value
k0. Hence, C1(k0) becomes minimal when 0 < k < n∗. Note that the expression
dC1(k)

dk |k=k0 = 0 is a non-linear equation on k0. We have difficulty in obtaining an
analytic representation of k0. However, we obtain the upper bound of k0 as follows.
Applying 1

1−βn∗ < 1
1−βk (k < t < n∗) to the first derived term dC1(k)

dk , we have

dC1(k)

dk
> λe−λk − βn∗+k ln β

1 − βn∗

∫ n∗

k
λe−λtdt − 1 − βn∗+k

1 − βk
λe−λk − βn∗+k ln β

1 − βn∗ e−λn∗

= −βke−λk

(1 − βk)(1 − βn∗
)
[λ(1 − βn∗

)2 + (1 − βk)βn∗
ln β].

The last expression becomes zero when k = 1
ln β

ln(1 + λ(1−βn∗
)

βn∗ ln β
), which means that

k0 < 1
ln β

ln(1 − λ
ξ ·δ(i) ) holds for the solution k0 satisfying dC1(k)

dk
= 0.

If we consider the worst case analysis, i.e. a larger n∗, then the value k0 may be
derived by the dichotomous search algorithm in the polynomial time. Let B(k) =
dC1(k)

dk
(k = 1, 2, . . . , n∗). The dichotomous search algorithm to determine the value

k0 in a finite increasing sequence is given below.

Algorithm 1

Step 1 Input B(1), B(2), B(3), . . . , B(n∗).
Step 2 If B(�n∗+1

2 � + 1) > 0, then delete sequence B(�n∗+1
2 � + 2), B(�n∗+1

2 � +
3), . . . , B(n∗); if B(�n∗+1

2 � + 1) < 0, then delete sequence B(1), B(2), . . . ,
B(�n∗+1

2 �).
Step 3 Repeat Step 2 until two items remain in the sequence and compare their abso-

lute sizes, and then output the subscript of the minimal absolute value, i.e.
k0.

It is easy to know that its time complexity is O(log n∗).
If 1

λ
→ +∞, then λ → 0. We limit this to the expression C(k). We obtain that

the optimal competitive ratio of any strategy A(k) is 1
s(1+τ)(1−β)

+ (1 − 1
s(1+τ)(1−β)

)βk,
which increases monotonically on k. This is obviously true for 0 < k ≤ n∗. For n∗ < k,
we can conclude that C2(k) → 1

s(1+τ)(1−β)
+ (1 − 1

s(1+τ)(1−β)
)βk, namely that it con-

verges to a linear function of k. It is obvious for optimal strategy to purchase the
equipment at the very beginning, and the competitive ratio is limited to 1.

Note that we can extend the results of Theorem 1. If i → 0 and τ → 0, then n∗ → s,
and 1

ξ ·δ(i) → s. The competitive ratio of case 1 in Theorem 2 is limited to 1 + 1
λs e−λs,

and the competitive ratio of case 2 in Theorem 2 limits to 1 + e−1. Sect. 4 will show
by comparing Theorem 2 with Theorem 1 by numerical analysis, that there may be
one interesting feature: that with the introduction of the interest rate and tax rate, the
uncertainty involved in decision making diminishes, and the optimal purchasing date
is put off.

3 Optimal analysis of the discrete model

In actual decision-making activities, many problems are essentially discrete. The input
structure is especially simple for the rental problem: its decision-making aim is to seek
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the optimally critical point. However, in probabilistic and statistical theory, many
probabilistic distributions can effectively depict this characteristic. For the discrete
problem, the most representative function is the geometric distribution that is often
one of the survival functions. For the decision-making problem of on-line leasing, the
input sequence shows that the leasing does not cease until purchasing appears, similar
to the Bernoulli trial of whether to rent continuously or purchase immediately. Thus,
its structure has exactly the property of the geometric distribution. In this study it
may be more reasonable to depict the input structures for the leasing problem. Here
we use the forward difference method to consider the discrete leasing models with-
out an interest rate and with an interest rate. Similarly, the concept of the stochastic
competitive ratio can be defined as follows.

Definition 2 Let the number of leases be a stochastic variable X subject to some type
of probability distribution function P(X = t). The discrete stochastic competitive ratio
is then defined as

C(k) = EX
CostON(X, k)

CostOPT(X)
=

∞∑
t=0

CostON(t, k)

CostOPT(t)
P(X = t), (11)

where P(X = t) is a probability function that is used by the investors to approximate
the input structures.

For the leasing problem, we consider the geometric distribution function P(X =
t) = θ t−1(1 − θ), (t = 0, 1, 2, 3, . . . ), where θ is the hazard rate of continuous leasing in
every period, and 1 − θ is the hazard rate of immediately purchasing in every period.

3.1 Leasing in a market without an interest rate

Let the costs of leasing and purchasing the equipment be 1 and s, respectively. Let τ be
the tax rate that is a proportion of the price s. For the off-line problem, if s(1 + τ) ≤ t
then buy, otherwise rent. The first observation is that

CostOPT(t) = min{s(1 + τ), t}. (12)

For the on-line problem, if t ≤ k, then always lease. According to the on-line strategy
A(k) (k = 0, 1, 2, . . . ), then

CostON(t, k) =
{

t, t ≤ k,
k + s(1 + τ) t > k.

(13)

Obviously, the optimal strategy is to immediately purchase if s(1 + τ) is equal to 1, so
s(1 + τ) is at least 2.

According to Eqs. 11, 12, and 13, we have, for k = 0, 1, 2, 3, . . . , (1 + τ)s, that

C(k) = (1 − θk) + (k + s(1 + τ))(1 − θ)

s(1+τ)∑
t=k+1

1
t
θ t−1 + k + s(1 + τ)

s(1 + τ)
θ s(1+τ) (14)

and for k = s(1 + τ) + 1, s(1 + τ) + 2, s(1 + τ) + 3, . . . ,

C(k) = (1 − θ s(1+τ)) + 1 − θ

s(1 + τ)

k∑
t=s(1+τ)+1

tθ t−1 + k + s(1 + τ)

s(1 + τ)
θk. (15)

Then we obtain the following result.
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Theorem 3 Let X be a random variable for the total number of times that the investor
leases the equipment, and the inputs are drawn from a geometric distribution that the
probability function is P(X = t) = (1 − θ)θ t−1. The following strategy provides an
optimal stochastic competitive ratio.

1. If 1
1−θ

< s(1 + τ), then the average cost of always leasing is less than the purchasing
cost s(1 + τ). The optimal strategy for an investor is to lease the equipment forever,

and the competitive ratio is 1 + θ s(1+τ)

s(1+τ)(1−θ)
.

2. If 1
1−θ

= s(1 + τ), then the average cost of always leasing is equal to the purchasing
cost s(1 + τ). The optimal strategy for an investor is to purchase the equipment after
leasing for s(1 + τ) − 1 periods, and the competitive ratio is 1 + (1 − 1

s(1+τ)
)s(1+τ).

3. If 1
1−θ

> s(1 + τ), then the average cost of always leasing is greater than the purchas-
ing cost s(1 + τ). The optimal strategy for an investor is to purchase the equipment
after leasing for k0 periods, and the competitive ratio is 1 − [1 − k0s(1+τ)(1−θ)

k0+1 −
s2(1−θ)(1+τ)2

k0+1 ]θk0 , where k0 satisfies s2(1 − θ)(1 + τ)2 − 0.09s(1 + τ) − 1 < k0 <

s2(1 − θ)(1 + τ)2 − 1. Note that k0 could be also determined by using the dichoto-
mous search algorithm in the polynomial time O(log s(1 + τ)).

4. If 1
1−θ

→ ∞, then the average cost of always leasing approaches ∞, and the optimal

competitive ratio of any strategy A(k) is 1 + k
s(1+τ)

. The optimal strategy for an
investor is to purchase equipment at the very beginning, and the competitive ratio
approaches 1.

Proof For k = 0, A(0) may be also an optimal investment strategy in which an inves-
tor chooses to buy at the beginning. A(0) often exists in practice, and the competitive
ratio is a finite value C(0) = s(1 + τ)(1 − θ)

∑s(1+τ)

t=1
1
t θ

t−1 + θ s(1+τ), where is different
from the case in [10] that C(0) → ∞ if k → 0. We discuss the following cases.

Case 1 For k = 0, 1, 2, . . . , s(1 + τ) − 2, we have

C(k + 1) − C(k) = − s(1 + τ)(1 − θ)

k + 1
θk + 1

s(1 + τ)
θ s(1+τ) + (1 − θ)

s(1+τ)∑
t=k+1

1
t
θ t−1

≤ − s(1 + τ)(1 − θ)

k + 1
θk + 1

s(1 + τ)
θ s(1+τ) + 1 − θ

k + 1
· θk − θ s(1+τ)

1 − θ

= θk(
1

k + 1
− s(1 + τ)(1 − θ)

k + 1
) + θ s(1+τ)(

1
s(1 + τ)

− 1
k + 1

) < 0.

For k = s(1 + τ) − 1, we note that C(s(1 + τ)) − C(s(1 + τ) − 1) =
[

1
s(1+τ)

− (1 − θ)
]

θ s(1+τ)−1 < 0.
For k = s(1 + τ) + 1, s(1 + τ) + 2, s(1 + τ) + 3, . . . , we also have C(k + 1) −

C(k) =
[

1
s(1+τ)

− (1 − θ)
]
θk < 0. It is clear that C(s(1 + τ) + 1) − C(s(1 + τ)) =[

1
s(1+τ)

− (1 − θ)
]
θ s(1+τ) < 0. Hence, it follows that C(0) > C(1) > · · · > C(s(1 +

τ) − 1) > C(s(1 + τ)) > C(s(1 + τ) + 1) > C(s(1 + τ) + 2) > · · · .
This shows that if 1

1−θ
< s(1 + τ), i.e., the average cost of always leasing is less than

the purchase cost s, then the optimal strategy for an investor is to lease the equipment
forever. Therefore, the competitive ratio C(k) becomes minimum as k → ∞. We can
derive the optimal competitive ratio as 1 + θ s(1+τ)

s(1+τ)(1−θ)
.
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Case 2 Similar to the proof of Case 1, for k = 0, 1, 2, 3, . . . , s(1 + τ) − 2, we also
obtain that C(k + 1) − C(k) < 0. For k = s(1 + τ) − 1, s(1 + τ), s(1 + τ) + 1, s(1 +
τ) + 2, s(1 + τ) + 3, . . . , note that C(k + 1) − C(k) = 0. Hence, it follows that C(0) >

C(1) > · · · > C(s(1 + τ)− 1) = C(s(1 + τ)) = C(s(1 + τ)+ 1) = C(s(1 + τ)+ 2) = · · · .
This shows that if 1

1−θ
= s(1 + τ), i.e., the average cost of always leasing is equal

to the purchase cost s(1 + τ), then their competitive ratios are all equal if the investor
buys the equipment at any arbitrary time after s(1 + τ)− 1 periods, while in the actual
investment the optimal decision should be to purchase at period s(1 + τ) − 1, and the
optimal competitive ratio is 1 + (1 − 1

s(1+τ)
)s(1+τ).

Case 3 Similar to the proof of Case 1 and Case 2, we can also conclude that C(s(1 +
τ)−1) < C(s(1+τ)) < C(s(1+τ)+1) < C(s(1+τ)+2) < · · · . Check that the second
order difference C(k+2)−2C(k+1)+C(k) > 0 (k = 0, 1, 2, . . . , s(1+τ)−2) as follows.
Because the inequality 1

1−θ
> s(1 + τ) ≥ 2 can be written as 0 > s(1 + τ)(1 − θ) − 1 ≥

1 − 2θ , we obtain θ > 1
2 , and

C(k + 2) − 2C(k + 1) + C(k)= θk(1 − θ)

(−θs(1 + τ)

k + 2
+ s(1 + τ) − 1

k + 1

)

> θk(1 − θ)
(s(1 + τ) − 1) + (k + 1)(1 − 2θ)

(k + 2)(k + 1)
>θk(1 − θ)

(k + s(1 + τ)) − 2(k + 1)

(k + 2)(k + 1)

≥ 0.

Hence, for k = 0, 1, 2, . . . , s(1 + τ), there is only a value k0 such that C(k0) becomes
minimum. We have the following two inequalities, i.e. C(k0 −1) > C(k0) and C(k0) <

C(k0 + 1), as follows.
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θk0−1(1 − θ)
s(1+τ)

k0
− 1

s(1+τ)
θ s(1+τ) − (1 − θ)

s(1+τ)∑
t=k0

1
t θ

t−1 > 0

θk0(1 − θ)
1−s(1+τ)

k0+1 + 1
s(1+τ)

θ s(1+τ) + (1 − θ)
s(1+τ)∑
t=k0+2

1
t θ

t−1 > 0.

As the above inequality group is non-linear with respect to k0, it is difficult to derive
an analytic representation of k0. However, the upper and lower bounds of k0 satisfy
the following inequality similar to the result in [10]:

s(1 + τ) − ln(θ − s(1 + τ)(1 − θ) + s2(1 + τ)2(1 − θ)2)

ln θ
< k0 < s2(1 − θ)(1 + τ)2 − 1.

For the upper bound, applying 1
t > 1

s(1+τ)
(s(1+τ) ≤ t ≤ k) to the first order difference

C(k + 1) − C(k), we obtain

C(k + 1) − C(k) > − s(1 + τ)(1 − θ)

k + 1
θk + 1

s(1 + τ)
θ s(1+τ) + 1 − θ

k + 1

s(1+τ)∑
t=k+1

θ t−1

=
[

1
s(1 + τ)

− s(1 + τ)(1 − θ)

k + 1

]
θk.

The last expression becomes zero when k = s2(1 − θ)(1 + τ)2 − 1, which means that
k0 < s2(1 − θ)(1 + τ)2 − 1 holds for k0 satisfying C(k + 1) − C(k) = 0, because the
first order difference C(k + 1) − C(k) increases monotonically as mentioned earlier.
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For the lower bound, using 1
t ≤ − 1

s(1+τ)(k+1)
(t−s(1+τ))+ 1

s(1+τ)
(k ≤ t ≤ s(1+τ)),

we obtain

C(k + 1) − C(k) < − s(1 + τ)(1 − θ)

k + 1
θk + 1

s(1 + τ)
θ s(1+τ)

+ (1 − θ)

s(1+τ)∑
t=k+1

[
− t − s(1 + τ)

s(1 + τ)(k + 1)
+ 1

s(1 + τ)

]
θ t−1

=
[
s(1 + τ)(1 − θ) − s2(1 + τ)2(1 − θ)2 − θ + θ s(1+τ)−k

] θk

s(1 + τ)(1 − θ)(k + 1)
.

The last expression yields zero when k = s(1 + τ) − ln(θ−s(1+τ)(1−θ)+s2(1+τ)2(1−θ)2)
ln θ

.

Thus, it follows that s(1 + τ)− ln(θ−s(1+τ)(1−θ)+s2(1+τ)2(1−θ)2)
ln θ

< k0 for the same reason
discussed earlier.

We can verify that the difference of the upper and lower bounds is less than
0.09s(1+τ) by numerical simulation. If we consider the worst case analysis, i.e. a large
s(1+τ), let B(k) = C(k+1)−C(k), and then we know that B(k) (k = 1, 2, . . . , s(1+τ))
is strictly monotone increasing. Similar to Theorem 2, the dichotomous search algo-
rithm is also used to determine the optimal decision-making date k0 in a finite
increasing sequence. It is easy to know that the time complexity of this method is
O(log s(1 + τ)). Moreover, we also obtain important information that the hazard rate
θ to continue leasing every period is greater than 1

2 . Compared to the decision-making
date in [14,7], the optimal purchasing date is advanced and the competitive ratio is

1 − [1 − k0s(1+τ)(1−θ)
k0+1 − s2(1−θ)(1+τ)2

k0+1 ]θk0 .

Case 4 If 1
1−θ

→ +∞, then C(k) → 1 + k
s(1+τ)

for the entire range of k.

Whichever case we consider, the competitive ratio that an investor will take the
strategy A(s(1 + τ) − 1), even when there is a large deviation for the hazard ratio
θ from estimation, is obviously better than the deterministic competitive ratio 2 − 1

s
in [14] and the randomized competitive ratio in [7]. For example, if s = 10, τ = 0,
and θ = 0.95, then the competitive ratio of 1.56722 in our models is better than the
competitive ratio of 1.9 in [14], and the randomized competitive ratio of 1.582 in [7].

3.2 Leasing in a market with an interest rate

According to (11), (7), and (8), we can obtain, for k = 0, 1, 2, 3, . . . , n∗, that

C(k) = (1 − θk) + (1 − θ)(1 − βn∗+k)

n∗∑
t=k+1

1
1 − β t θ

t−1 + (βk + 1 − βk

s(1 + τ)(1 − β)
)θn∗

(16)

and for k = n∗ + 1, n∗ + 2, n∗ + 3, . . . ,

C(k) = (1 − θn∗
) + 1 − θ

s(1 + τ)(1 − β)

k∑
t=n∗+1

(1 − β t)θ t−1 + (βk + 1 − βk

s(1 + τ)(1 − β)
)θk.

(17)
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Note that, for i → 0, we have n∗ → s(1 + τ). The optimal off-line cost (7) and
on-line cost (8) degenerates to (12) and (13) without an interest rate and a tax rate,
respectively. Accordingly, the expressions (16) and (17) degenerate to (14) and (15),
respectively. Thus, similar to the analysis of Theorem 3, we give the following results.
For simplicity, we omit the proof here.1

Theorem 4 Let X be a random variable for the total number of times that the investors
leases the equipment. Let the input sequence be drawn from a geometric distribution
that the probability function is P(X = t) = θ t−1(1 − θ). Let i be the interest rate in
the financial market. The following strategy provides an optimal stochastic competitive
ratio.

1. If 1
1−θ

< 1
ξ(1+i) , then the average cost of always leasing without an interest rate is less

than the present discount value of the reciprocal of the relative opportunity cost. The
optimal strategy for an investor is to lease the equipment forever, and the competitive
ratio is 1 + 1+β(1−2θ)

(1−β)(1−βθ)
ξθn∗

.

2. If 1
1−θ

= 1
ξ(1+i) , then the average cost of always leasing without an interest rate is

equal to the present discount value of the reciprocal of the relative opportunity cost.
The optimal strategy for an investor is to buy the equipment after n∗ −1 periods, and
the competitive ratio is 1 + ( θ

1+i )
n∗

.

3. If 1
1−θ

> 1
ξ(1+i) , then the average cost of always leasing without an interest rate is

greater than the present discount value of the reciprocal of the relative opportunity
cost. The optimal strategy for an investor is to buy the equipment after k0 periods, and

the competitive ratio is 1+(
βs(1+τ)(1−θ)(1−βn∗+k0 )

βn∗
(1−βk0+1)

−1)θk0 , where the decision-making

date k0 is established by using the dichotomous search algorithm in the polynomial
time O(log n∗).

4. If 1
1−θ

→ ∞, i.e. the average cost of always leasing without interest rate approaches

+∞, then the optimal competitive ratio of any strategy A(k) is 1
s(1+τ)(1−β)

+ (1 −
1

s(1+τ)(1−β)
)βk. The optimal strategy for an investor is to purchase the equipment at

the very beginning, and the competitive ratio is limited to 1.

Note that Theorem 4 is an extension of Theorem 3. If i → 0, then n∗ → s, and
1

ξ(1+i) → s(1 + τ). Comparing Theorem 4 to Theorem 3 using numerical analysis in a
way that is similar to that in Sect. 2, we find that an interesting feature may be that
with the introduction of an interest rate and a tax rate, the uncertainty involved in
decision making diminishes, and the optimal purchasing date is put off.

4 Numerical analysis

In this section, we present several numerical examples to develop a more intuitive
understanding about our analysis and the effect on the competitive ratio when the
parameters in our model are varying. To save space, we only analyze Cases 1 and 3 in
our theorems (the analyses of Cases 2 and 4 are obvious). The numerical results are
presented in Figs. 1–6 in the appendix. Suppose that there is a company in need of
equipment. In the capital market, let the rental cost of the equipment in every period

1 The proof is available to interested readers upon request.
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Fig. 1 Case 1 and Case 3 of r = 1, s = 30, and τ = 0 in Theorem 1 and Theorem 2. With the
introduction of the interest rate, the curves of the competitive ratio shift downward and the optimal
purchasing date is put off

be a constant 1, and let the purchase price of the equipment be s. From Figs. 1–6,
the horizontal coordinates measure the different strategies that the on-line investor
takes. The vertical coordinates show the size of the competitive ratio in the different
strategies. The curves in the figures show that when the interest rate i and the hazard
parameter λ or θ vary, the competitive ratios also vary according to the different
strategies taken by the investor. It is easy for us to determine the rental cost in every
period and the purchase price. For the estimation of the hazard parameters λ and
θ , because the activity has taken place until the moment that the investor buys the
equipment after renting it for some periods, the parameters λ and θ can be estimated
by using the maximum likelihood method in statistical theory. The samples of the
parameters could be obtained according to the information of other investors or the
advice of experts. In our analysis, the samples of these parameters can be derived by
using computers to simulate experts opinion, and then we use the maximum likeli-
hood method to estimate the value of the parameters. Moreover, we find that different
expert groups ultimately lead to different investment strategies. Now, we will further
analyze the changes of the competitive ratio when an interest rate is introduced. We
present the results in the appendix.

In Fig. 1 in the appendix, when there is no interest rate i in the market, the two
curves of λ = 0.05 and λ = 0.01 are the cases in Theorem 1: i.e., they are the cases
of the Fujiwara and Iwama model [10]. When the interest rate is introduced, we
find that the curves shift downward accordingly. This shows that the market interest
rate has important effects on the investment decision. The greater the time value of
money, the more rational and prudent will be the investor in choosing the investment
strategies. Hence, with the existence of an interest rate, the uncertainty involved in
(financial) decision making diminishes. Therein, when i = 2% and λ = 0.05, the curve
of the competitive ratio shifts down monotonously. The lower curve indicates that
the average cost of always leasing without an interest rate is less than the present
discount value of the reciprocal of the relative opportunity cost. The optimal strategy
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for the investor is to lease the equipment forever. We also find that the values of the
competitive ratio reduce rapidly and then gradually approach the limit value when
k varies from 0 to infinity. For example, when an investor takes strategies A(50) and
A(500) the values of the competitive ratios are almost the same. When the interest
rate i = 2% and λ = 0.01, the curve of the competitive ratio first declines and then
increases. This patten shows that an investor considers the average cost of always
leasing without an interest rate to be greater than the present discount value of the
reciprocal of the relative opportunity cost. The optimal strategy for the investor is
to buy the equipment after renting for some periods. This explains why there are
different types of investors in reality. Some may like to use the rental strategy forever,
while others may purchase the equipment after renting for some periods when the
competitive ratios hardly change because k is very large. From the theoretical analysis,
the optimal strategy should be used when its competitive ratio is minimum. Similar
arguments can be made about the other strategy in Fig. 1 and all of the curves in Fig. 4
in the appendix.

In Figs. 2 and 5 in the appendix, we note that the curves of the competitive ratio
shift downward with the increase of the interest rate, and both purchasing dates are
put off: that is to say, the higher the interest rate, the more level-headed and prudent is
the investor when they choose the investment strategy due to the time value of money.
In Figs. 3 and 6 in the appendix, we also find that the estimation results of hazard rates
λ and θ affect the competitive ratio. Similarly, when the tax rate is introduced, we also
obtained numerical results. For example, when the tax rate τ is introduced, the curves
of the competitive ratios shift downward accordingly, and the optimal purchasing date
is put off. This shows that the tax rate also has important effects on the investment
strategy that the investor uses. Moreover, the higher the tax rate, the more that the
curves of the competitive ratio shift downward and the optimal purchasing date is put
off. This shows that the investor more rationally chooses the investment strategy due
to the increase of the tax cost. By the above analysis, with the introduction of some
financial factors, the uncertainty involved in decision making diminishes.

Fig. 2 Case 1 and Case 3 of r = 1, s = 30, and τ = 0 in Theorem 2. The higher the interest rate, the
more the curves of the competitive ratio shift downward and the optimal purchasing date is put off
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Fig. 3 Case 1 and Case 3 of r = 1, s = 30, and τ = 0 in Theorem 2. The changes of parameter λ have
significant effects on the competitive ratios

Fig. 4 Case 1 and Case 3 of r = 1, s = 19, and τ = 0 in Theorem 3 and Theorem 4. With the
introduction of the interest rate, the curves of the competitive ratio shift downward and the optimal
purchasing date is put off

In the traditional decision making of financial leasing, the approach used is often
cost analysis, which is simple and exercisable. Namely, by comparing the rental cost
with the purchase cost, we choose the low cost project, which is the optimal strategy.
It is exactly the off-line optimal algorithm in the competitive analysis. For the on-line
decision problem, because the future demand is entirely uncertain, it is impossible for
us to use the traditional method of cost analysis to determine investment decisions.
Hence, how to skillfully design the online strategy is very important, because online
decisions can offer decision makers a new investment idealogy and inspiration.
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Fig. 5 Case 1 and Case 3 of r = 1, s = 19, and τ = 0 in Theorem 4. The higher the interest rate, the
more the curves of the competitive ratio shift downward and the optimal purchasing date is put off

Fig. 6 Case 1 and Case 3 of r = 1, s = 19, and τ = 0 in Theorem 4. The changes of parameter i have
significant effects on the competitive ratios

5 Conclusions

The concept of the competitive ratio is not a new-found and optimal decision-mak-
ing criterion from a decision-making theory point of view. Although Ran El-Yaniv
consummated the axiom system of the competitive ratio, it still has inherent and insur-
mountable limitations [5]. Hence, a central issue is still how to perfect and improve
the analysis performance of the competitive ratio by combining it with other meth-
ods. How to depict input information under uncertain conditions is also a focal point,
and we think that Rough set theory and possibility distribution could be integrated
into pure competitive analysis to improve the performance measures of on-line algo-
rithms. Moreover, as shown in our analysis, we know that the competitive ratio can
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be improved when more realistic factors are considered. For example, the model of
on-line leasing in this paper can be further studied when factors such as inflation,
salvage cost, etc. are considered, or when the rental or purchase price fluctuate.
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